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Abstract Since the first appearance of vascular plants

during evolution, the plant body has become specialized for

adaption to land conditions. Much of our knowledge of

plant body specialization and the origins of tissues from

stem cells have been obtained from studies on the dicot

Arabidopsis thaliana. However, less is known about plant

body specialization in monocots, another important branch

of angiosperms. In this study, we analyzed stem cell lin-

eage and differentiation during development of the root and

leaf of the monocot model plant rice (Oryza sativa). Our

results showed that three body layers of rice are established

from stem cells accompanied by progressively reduced

pluripotency. Layer 1 (L1) is a single-cell layer of epi-

dermis; L2 is the cortex/endodermis in the root and the

mesophyll in the leaf; and L3 is the site of vascular

initiation. At least two common steps in vascular devel-

opment are shared between rice root and leaf. The prep-

rocambium divides to form the procambium and root

pericycle or leaf outer sheath. The procambium further

differentiates into the xylem, phloem and circumambient

cells. We found that the outer sheath of leaf vascular

bundles originates not only from the preprocambium of L3,

but also from the mesophyll precursor cells of L2. In

addition, WUSCHEL-RELATED HOMEOBOX (WOX)

genes are expressed in not only the stem cell niche but also

metaxylem precursor in rice. This pattern differs from that

of homologs in Arabidopsis, suggesting that WOX func-

tions have been recruited in different stem cells in dicots

and monocots.

Keywords Oryza sativa � Stem cell � Body layer �
Preprocambium � Vascular development � WOX

1 Introduction

More than 400 million years ago, the colonization of land

by plants had a great impact on the evolution of both plants

and animals [1–3]. Plant bodies became functionally spe-

cialized to adapt to life on land. The vasculature, which is

located in the inner center of all organs, is one of those

specialized structures. Vascular tissues contain not only the

xylem and phloem but also adult stem cells. Together,

these tissues and cells function in the long-distance trans-

port of water, nutrients and other substances, in the phys-

ical support of the plant body, and in the initiation of de

novo organogenesis [1, 4–7].

Specialized tissues originate from stem cells, which are

characterized by their ability to both self-renew and dif-

ferentiate into functional cells [8–11]. Different from
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those in animals, stem cells in plants are able to maintain

their activity throughout the whole life of the plant to

continuously produce organs at the post-embryo stage,

allowing some plant species to have almost interminable

lives [8, 9]. Stem cells are usually located in the meristem,

which comprises the stem cell niche and neighboring

transit-amplifying cells [8]. The stem cell niche usually

consists of an organizer and its surrounding initial cells.

The initial cells usually undergo cell division to form two

daughter cells; one daughter cell adjacent to the organizer

retains its initial cell identity and the other gives rise to

transit-amplifying cells. The primary function of the

organizer is to send signals to the initial cells to maintain

their undifferentiated state. Transit-amplifying cells can

undergo rapid cell division and begin to differentiate into

specialized tissues.

The maintenance and differentiation of plant stem cells

are controlled by a complex molecular network, in which

WUSCHEL-RELATED HOMEOBOX (WOX) family genes

have an essential role [12]. WOX genes encode home-

odomain transcription factors and are found in a wide

range of plant species from green algae to angiosperms

[12–17].

A recent study suggested that the origin of angios-

perms, the most highly evolved group of vascular plants,

was traced back to 225–240 million years ago in the Late

to Middle Triassic. The origin of monocots, a subgroup

of angiosperms, was estimated to be 154–191 million

years ago in the Jurassic [18]. To date, most studies on

the mechanism controlling stem cells have been con-

ducted in dicots using the model plant Arabidopsis

thaliana, and little is known about this mechanism in

monocots. However, the organization of the tissue

structures differs between monocots and dicots [19–21].

Unraveling the common and diverse mechanisms con-

trolling tissue formation from stem cells in dicots and

monocots will improve our understanding of how plant

body structures have evolved in angiosperms. In this

study, we performed detailed histological and molecular

analyses of stem cell lineage in body layer formation and

vascular patterning in the monocot model plant rice

(Oryza sativa).

2 Materials and methods

2.1 Plant materials and growth conditions

Oryza sativa L. japonica. cv. Nipponbare was used as the

wild-type rice, and Columbia-0 (Col-0) was used as the

wild-type A. thaliana. Rice plants were grown at 29 �C
with a 12-h light (*10,000 lux)/12-h dark photoperiod in a

greenhouse or plant chamber.

2.2 Sectioning and microscopy observation

For paraffin sectioning, samples were fixed in FAA solu-

tion (v/v: 50 % ethanol, 5 % acetic acid, 3.7 % formalde-

hyde) at 4�C for 24 h. Samples were dehydrated in a

graded ethanol series followed by a graded ethanol/Histo-

Clear series with safranin O staining. Then, tissues were

embedded in paraffin and cut into 9-lm sections onto poly-

L-lysine coated slides. The sections were de-paraffinized in

Histo-Clear.

For thin sectioning [22], samples were fixed in FAA

solution at 4 �C for more than 24 h. Samples were then

dehydrated with a graded ethanol series and acetone,

infiltrated in a series of resin and acetone solutions,

immersed in resin for 24 h and embedded in Epon 812

resin. After polymerization at 35 �C for 6 h and 60 �C for

around 2 days, 3-lm-thick sections were cut using a Leica

2265 microtome (Leica Microsystems GmbH, Wetzlar,

Germany). The sections were stained with toluidine blue.

Differential interference contrast (DIC) microscopy

observations were performed as previously described [23,

24]. Samples were observed under a Nikon Eclipse 80i

microscope (Nikon, Tokyo, Japan).

2.3 In situ hybridization and quantitative reverse

transcription-polymerase chain reaction (qRT-

PCR)

In situ hybridization was performed according to our pre-

vious method [25, 26], and the probes were subcloned into

the pGEM-T Easy vector (Promega, USA) using the fol-

lowing primers: 50-ATGCCTCAGACCCCTTCGAC-30

and 50-TTAATTGGTGGAGGTGGAGC-30 for OsNAL2,

50-ATGAGGCTTCACCATCTGCATG-30 and 50-TTAAG
CTTTTCCCTGGGGATG-30 for OsWOX4, and 50-ATG
GAGGCTCTTAGCGGGCGAG-30 and 50-ACTAGGAC
TAGGCACAGCGACA-30 for OsWOX5.

RNA extraction and qRT-PCR were performed as

previously described [22, 27], using the following gene

specific primers: 50-CCCGTCGGCGGAGCAGATAAA
G-30 and 50-AGCGTGCTGAGGGTGAGGAGGG-30 for

OsWOX4; and 50-GGTATTGTTAGCAACTGGGATG-30

and 50-GATGAAAGAGGGCTGGAAGA-30 for OsAC

TIN. The qRT-PCR results are shown as the relative

expression levels, which were normalized against those

produced by the primers for OsACTIN.

2.4 Accession numbers

Sequence data of riceWOX genes can be found in the Rice

Genome Annotation Project under the following acces-

sion numbers: OsWUS (LOC_Os04g56780), OsWOX2

(LOC_Os01g62310), OsWOX3B (LOC_Os05g02730),
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OsNAL3 (LOC_Os12g01120), OsNAL2 (LOC_Os11g01

130), OsWOX4 (LOC_Os04g55590), OsWOX5 (LOC_

Os01g63510), OsWOX9A (LOC_Os01g47710), OsWOX

9B (LOC_Os07g34880), OsWOX9C (LOC_Os05g48990),

OsWOX11 (LOC_Os07g48560), OsWOX12A (LOC_

Os08g14400), OsWOX12B (LOC_Os03g20910) and

OsWOX13 (LOC_Os01g60270).

3 Results

3.1 Cell lineage in the body layer specialization of rice

and Arabidopsis roots

To analyze the cell lineage and tissue structure in rice root,

we sectioned the root apical meristem (RAM), using the

primary root (radicle) of 5-day-old rice plants. Within the

RAM, the stem cell niche was composed of quiescent

center (QC, the organizer) cells and surrounding initial

cells (Fig. 1a) [8, 28]. Three body layers could be traced

according to their initial cells (Fig. 1a). Layer 1 (L1) was

composed of only one layer of epidermal cells, which were

derived from the epidermal initial cell. The endodermis–

cortical initial cell in L2 produced the endodermis and

cortex. The vascular initial cell in L3 functioned as the

preprocambium, which gave rise to two kinds of transit-

amplifying cells; the procambium and pericycle cells. In

the primary root of rice, procambium and pericycle cells

together formed a group of five sublayers of cells (L3-1 to

L3-5), and differentiated to form the vascular cylinder (also

called the stele) (Fig. 1a). The rice root cap, which was

initiated from the columella initial cell and lateral root cap

initial cell [29], was independent from the three layers

(Fig. 1a).

In the stem cell niche of Arabidopsis root, the endo-

dermis–cortical initial cell in L2 was also adjacent to the

QC (Fig. 1b). However, the initiations of the epidermis in

L1 and the vascular cylinder in L3 differed between Ara-

bidopsis and rice (Fig. 1b) [9, 30]. In Arabidopsis, the

epidermis and the lateral root cap had a common initial

cell, known as the epidermal/lateral root cap initial cell

(Fig. 1b) [9, 30], while the lateral root cap initial cell and

the epidermal initial cell were separate in rice (Fig. 1a)

[29]. Therefore, the lateral root cap in Arabidopsis seems to

be a derivative of L1 structure.

During vascular formation, the preprocambium cell of

L3 was not retained in the post-embryo growth of the

primary root in Arabidopsis [31] (Fig. 1b). The prepro-

cambium of Arabidopsis appears at the embryo stage and

differentiates into a group of procambium initial cells and

the pericycle initial cell during embryo development [31].

At the post-embryo stage, the Arabidopsis root stem cell

niche retained the procambium initial cells and the

pericycle initial cell in L3, which together served as the

vascular initial cells (Fig. 1b). However, the preprocam-

bium was retained throughout the post-embryo stage in rice

root (Fig. 1a).

3.2 Vascular patterning in rice root

To trace the cell lineage in vascular patterning, we pre-

pared a series of sections from the primary root of 5-day-

old rice (Fig. 2a, b). The procambium underwent rapid cell

division, leading to a radial symmetry structure with four

sublayers. The four sublayers (L3-1 to L3-4) of procam-

bium cells and one sublayer (L3-5) of pericycle cells

constituted the immature vascular cylinder (Fig. 2c). At

this stage, the procambium was composed of parenchyma

cells that were indistinguishable from each other, except

for the very large cell in the center (Fig. 2c).

The procambium then differentiated to form vascular

tissue precursors (Fig. 2d) [20, 32]. Phloem and pro-

toxylem precursors were identified in the L3-4 sublayer.

Six cells in L3-4 divided to form phloem precursors. Each

phloem precursor was composed of four cells that origi-

nated from a single cell (Fig. 2d). Six protoxylem precur-

sors were also identified in L3-4 (Fig. 2d). The protoxylem

precursors and phloem precursors showed an alternate and

radially symmetrical distribution pattern (Fig. 2d). In the

center of the vascular cylinder, the single L3-1 cell was the

metaxylem precursor (Fig. 2d). Because phloem and pro-

toxylem precursors could be identified, the pericycle cells

were classified as the phloem-pole and xylem-pole peri-

cycles (Fig. 2d).

The vascular tissue precursors further differentiated to

form mature vascular tissues (Fig. 2e, f) [20, 32]. The first

maturation was observed in the four-cell structure of the

phloem precursor, as the cell toward the pericycle became

the protophloem sieve-tube element (also called pro-

tophloem sieve-tube member) (Fig. 2e). Mature phloem

and xylem structures formed in the maturation zone of the

root and consisted of six phloem and six protoxylem vessel

elements (also called protoxylem vessel members) alter-

nately distributed around the large metaxylem vessel ele-

ment in the center (Fig. 2f). Each phloem comprised a

protophloem sieve-tube element, a metaphloem sieve-tube

element and two companion cells (Fig. 2f). Pericycle cells

also underwent fate transition at this stage. Some xylem-

pole pericycle cells underwent cell division and became

thick-walled sclerenchyma (Fig. 2f), while the phloem-

pole pericycle cells gave rise to the lateral root primordium

(Fig. 2f). Some studies have indicated that the phloem-pole

endodermis also gives rise to outer cells of lateral root

primordia in rice [20, 33–36].

In the very mature root from 20-day-old rice plants, the

vascular cylinder was fully differentiated (Fig. 2g). A

Sci. Bull. (2016) 61(11):847–858 849
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typical feature at this stage was that the remaining pro-

cambium cells formed one or more circle(s) of cells (re-

ferred to as circumambient cells in this study for

convenience) around each xylem vessel element (indicated

in blue in Fig. 2g). The circumambient cells around pro-

toxylem vessel elements came not only from the procam-

bium cells, but also from the xylem-pole pericycle cells

(Fig. 2f). At this stage, the procambium and pericycle cells

had fully differentiated into vascular tissues and lateral

roots.

There was diverse vascular patterning in different types

of rice roots. The primary root had a single metaxylem in

the center (Fig. 2g), while there could be several metax-

ylems in the adventitious root (Fig. 2h). In the lateral root,

the vascular cylinder was very simple, without differenti-

ation of complex structures of vascular tissues (Fig. 2i).

3.3 Body layer formation and vascular patterning

in rice leaf

To analyze cell lineage in the formation of body layers and

the vascular bundle (vascular cylinder in the leaf), we

prepared a series of sections from leaves at different stages

of development. Because tissues in the leaf become mature
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from the distal end (leaf tip), we prepared sections to

observe immature regions at the proximal end (leaf base) of

the leaf primordium (Fig. 3a), the 2-mm young leaf

(Fig. 3b) and the 8-mm young leaf (Fig. 3c, d). To observe

mature regions, we sectioned the middle part of a 10-cm

leaf (Fig. 3e–h) and a 30-cm leaf (Fig. 3i). Vascular
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bundles in rice leaves were classified as large, small or

simple (Fig. 3h).

Previous studies have suggested that a meristem exists at

the leaf margin [37]. In addition, leaf margins in monocots

may recruit all layers of cells from the shoot apical

meristem (SAM) [38, 39]. In the rice leaf primordium, we

observed the formation of three body layers at the leaf

margin region (Fig. 3a). There was a single cell at the leaf

margin, which we called the leaf margin cell (probably

serving as the organizer, see ‘‘Discussion’’ section).

Adjacent to the leaf margin cell were two epidermal initial

cells (L1) at both the adaxial and abaxial sides, and one or

several mesophyll–vascular initial cell(s) (L2 and L3)

beneath the epidermis (Fig. 3a). Adjacent to the meso-

phyll–vascular initial cell, there were transit-amplifying

cells, i.e., the mesophyll precursor cells at both the adaxial

and abaxial sides to form L2 and the preprocambium at the

middle domain to form L3 (Fig. 3a).

When all of the body layers had been established, L1

and L2 each had two cell layers: L1 consisted of adaxial

and abaxial epidermal cells; L2 formed adaxial and abaxial

mesophyll precursors. L3 was a single layer at the juxta-

position of the adaxial and abaxial domains, i.e., the middle

domain (Fig. 3a) [40] and served as the preprocambium,

which gave rise to vascular bundles.

Three or more neighboring preprocambium cells of L3

initiated vascular tissues (Fig. 3b). The middle prepro-

cambium cell(s) divided to form the procambium, while

the bilateral preprocambium cells formed the bilateral cells

of the outer sheath (Fig. 3b).

The outer sheath and procambium underwent further

differentiation (Fig. 3c). The outer sheath could be subdi-

vided into bilateral, adaxial, and abaxial cells. The bilateral

cells of the outer sheath were derived from the L3 prep-

rocambium, while mesophyll precursor cells in L2 formed

the adaxial and abaxial cells of the outer sheath (Fig. 3c).

At this stage, the procambium was composed of par-

enchyma cells that were still dividing (Fig. 3c).

The first tissues to reach maturity in the large vascular

bundle were the protophloem and the protoxylem (Fig. 3d).

The inner sheath, which was beneath the outer sheath,

formed from the procambium cells (Fig. 3d). Therefore,

the outer sheath and inner sheath have partially different

origins [41]. At this stage, the metaphloem precursor and

the metaxylem precursor could be identified (Fig. 3d).

All tissues in the large vascular bundle were further

differentiated (Fig. 3e). The protophloem was extruded and

disappeared when the metaphloem (i.e., the metaphloem

sieve-tube element and companion cells) reached maturity.

The protoxylem also degraded and became the air space

when two metaxylem vessel elements formed (Fig. 3e).

The remaining procambium, together with partial inner

sheath, formed circumambient cells around xylem vessel

elements (Fig. 3e), like its pattern in the root. At this stage,

most of the mesophyll precursor cells had differentiated

into mesophyll or large parenchyma cells (Fig. 3e). In

addition, the L3 cells that had not developed into vascular

bundles differentiated into mesophyll cells (Fig. 3e).

The simple and small vascular bundles had similar outer

and inner sheaths (Fig. 3f, g). However, the simple vas-

cular bundle had no complex structures, only some small

cells inside the inner sheath (Fig. 3f), similar to that in the

lateral roots (Fig. 2i). Small vascular bundles had a dif-

ferentiated xylem and phloem, but harbored only pro-

toxylem, and no metaxylem (Fig. 3g).

In an old leaf, the outer sheath had differentiated into

large parenchyma cells (Fig. 3i).

3.4 WOX genes in stem cells of rice root and leaf

The WOX family genes encode important transcription

factors controlling stem cells. These transcription factors

can be classified into three clades (ancient, intermediate,

and WUS clades) according to their presence during the

evolution of plants [12, 13, 42]. The three clades of Ara-

bidopsis and rice WOX proteins can be further classified

into subclades (Fig. 4a) [14, 42].

Members of the WOX family contain a conserved

homeodomain, which consists of three helixes [16]

(Fig. 4a). Alignment of the homeodomains of 14 WOX

genes in Arabidopsis and 14 WOX genes in rice revealed a

peptide sequence in helix 3 that can distinguish the three

clades of WOX proteins (Fig. 4a): YNWFQNR in the

ancient clade, FYWFQNR in the intermediate clade, and

FYWFQNH in the WUS clade. The ‘‘YN’’ to ‘‘FY’’ change

in the sequence occurred during the evolution from the

ancient to the intermediate clade [15], and the ‘‘R’’ to ‘‘H’’

change may have occurred during the evolution from the

intermediate clade to the WUS clade. Interestingly, the

WUS clade ancestor CrWUL in the fern Ceratopteris

richardii does not harbor this FYWFQNH sequence;

instead, its sequence is FYWFQNQ [15]. This indicates

that the evolution of the WUS clade in fern is not complete,

although CrWUL contains the WUS-clade-specific WUS-

box and the WUS/WOX5-specific EAR-like domain [15].

To study the role of WOX genes in root and leaf stem

cells of rice, we analyzed the expression patterns of several

candidates from the WUS clade. NARROW LEAF2

(OsNAL2) and OsNAL3 genes (also called OsWOX3A)

were shown to be involved in leaf margin identity and leaf

expansion [45, 46], similar to their homologs in maize and

Arabidopsis [38, 47]. We analyzed OsNAL2 expression in

the rice leaf primordium (Fig. 4b–d). In most cases,

OsNAL2 was specifically expressed in the single leaf

margin cell (Fig. 4b, d) and occasionally also in the epi-

dermal initial cell and mesophyll–vascular initial cell
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(Fig. 4b, c). This expression pattern suggested that the leaf

margin cell together with the initial cells may serve as the

stem cell niche.

AtWOX5 in Arabidopsis was shown to be specifically

expressed in root QC cells [48]. Interestingly, our in situ

hybridization results showed that OsWOX5 has a more

extensive expression pattern in rice. First, OsWOX5 was

strongly expressed in the metaxylem precursor cells in the

primary root (Fig. 4e), consistent with the results of a

recent study [49]. Second, OsWOX5 was expressed at rel-

atively low levels in the stem cell niche of the root tip,

including the QC as well as the epidermal initial cell,

endodermis–cortical initial cell, and vascular initial cell

(Fig. 4f). However, it was not expressed in the columella

initial cell and lateral root cap initial cell (Fig. 4f). Rice has

a single OsWOX5 gene in the WOX5/7 subclade, while

Arabidopsis has two (AtWOX5 and AtWOX7) (Fig. 4a).

AtWOX7 was shown to be expressed in the endodermis–

cortical initial cells [50]. Therefore, it is possible that the

single OsWOX5 in rice has the functions of both AtWOX5

and AtWOX7 in Arabidopsis.

OsWOX4, like its homolog AtWOX4 in Arabidopsis [51,

52], was shown to be involved in procambium develop-

ment in rice [53]. Our qRT-PCR data showed that

OsWOX4 was strongly expressed at the leaf base, but

weakly expressed at the leaf tip (Fig. 4g), suggesting that

OsWOX4 expression decreases as the leaf matures. Next,

we performed in situ hybridization to analyze the spatial

expression pattern of OsWOX4 in leaves. The hybridization

signal was enriched in the vascular bundles of young leaves

(Fig. 4h, i). Further analysis showed that OsWOX4 was

specifically expressed in the metaxylem precursors of large

vascular bundles (Fig. 4j), and its expression ceased when

the metaxylem precursor differentiated into the metaxylem

vessel element (Fig. 4k), consistent with the qRT-PCR

results (Fig. 4g). Therefore, we suppose that OsWOX4 may

be involved in metaxylem precursor specification in the

procambium.

4 Discussion

4.1 Body layer specialization in rice

The typical structure of the rice body can be divided into

three body layers (see model in Fig. 5). Layer formation is

an old theory. In 1868, Hanstein [54] proposed the histogen

theory, which suggested that all tissues of higher plants

originate from three layers of cells, i.e., dermatogen,

periblem, and plerome. The three body layers in plants

seem to be similar to the three germ layers in animals [55].

However, there is a typical difference in the formation of

the three layers between plants and animals. In animals, the

germ layers form at the embryo stage. In higher plants,

however, the three body layers can continuously form

during the post-embryo stage because most plant organs

are formed post-embryonically.

4.2 Organization of stem cell niche and meristem

in rice root and leaf

Plant tissues and organs differentiate from various stem

cells [8, 9, 56]. According to their differentiation abilities,

stem cells can be classified as totipotent, pluripotent, or

unipotent [10, 11]. In higher plants, a stem cell usually

cannot differentiate into a mature cell via a single step;

therefore, stem cells are organized in a complex environ-

ment—the meristem, which consists of the stem cell niche

surrounded by transit-amplifying cells (Fig. 5a) [8]. Here,

we summarize the cell lineage in rice root and leaf

(Fig. 5a–c).

In rice root (Fig. 5b), the stem cell niche is composed of

the QC and its surrounding initial cells. The currently

accepted concept is that only initial cells serve as stem cells

in the RAM. However, in Arabidopsis, the QC might act

not only as the organizer of the stem cell niche, but

probably also as the primary stem cell with the highest

pluripotency, because initial cells could be replenished by a

low proliferation rate of the QC [30, 57]. This could also be

the case in rice, although such a cell lineage is still unclear

(question marks in Fig. 5b). On the other hand, transit-

amplifying cells serve as the transitional cells from the

initial cells (stem cells) to differentiated cells. This sug-

gests that transit-amplifying cells might also keep partial

features of stem cells. For example, pericycle cells serve as

‘‘adult stem cells’’ in de novo organogenesis in Arabidopsis

[7, 58]. Therefore, we suppose that the organizer, initial

cells, and transit-amplifying cells have the lineage with

gradually decreasing pluripotency and increasing cell

division activity.

In rice leaf (Fig. 5c), the leaf margin was thought to

maintain the meristem feature [37, 59]. In the leaf of

monocots, the margin recruits leaf cells from the shoot

apical meristem [38, 39]. Interestingly, our results showed

that OsNAL1 and 2 are specifically expressed in the leaf

margin cell (Fig. 4b–d). This suggests that the leaf margin

cell (probably as an organizer) together with its adjacent

initial cells could function as a stem cell niche in rice

(Fig. 5a, c). However, it is currently unclear whether the

leaf margin cell itself serves as the organizer and the

primary stem cell that replenishes all three layers of cells

in the whole leaf. It is also unclear whether all three

layers of cells originate from the initial cells adjacent to

the leaf margin cell (question marks in Fig. 5c). Reveal-

ing the cell lineage from the leaf margin and illustration

of the function of OsNALs in the initiation of the three
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layers may shed light on the role of the stem cell niche in

the leaf margin.

The preprocambium and procambium in the rice leaf are

probably transit-amplifying cells. The preprocambium

retains a large number of cells in the middle domain of the

leaf and can produce many vascular bundles, and this is

different from that in the root. In addition, the adaxial,

abaxial, and bilateral cells of the outer sheath are transit-

amplifying cells similar to the pericycle in the root, and

they finally differentiate into large parenchyma cells.

An interesting discovery in this study is that the for-

mation of the outer sheath in rice leaf requires the coop-

eration of both L2 and L3 cells. The vascular bundle is not

only produced from the L3 preprocambium, but also from
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the mesophyll precursor cells (L2). Therefore, the meso-

phyll precursor cells may also serve as transit-amplifying

cells that can differentiate into adaxial/abaxial cells of the

outer sheath and mesophyll (Fig. 5c).

4.3 Role of WOX genes in rice stem cells

WOX family genes are key regulators of stem cells in

plants. The primary role ofWOX genes may be to retain the

identity of undifferentiated stem cells, i.e., to prevent the

differentiation of stem cells. For example, the roles of

OsWOX5 and OsNAL2/3 in the stem cell niches of root and

leaf, respectively, could be to retain their pluripotency.

An interesting discovery in this study is that OsWOX4

is specifically expressed in the leaf metaxylem precursor

cells, a special type of cell in the procambium. This

expression pattern differs from that of its Arabidopsis

homolog AtWOX4, which is expressed in nearly all of the

procambium cells [51, 52]. This may be because of the

different vascular structures in Arabidopsis and rice. In

Arabidopsis, procambium cells are retained for the con-

tinuous production of xylem and phloem in leaves during

the whole life of the plant. In contrast, in rice, the leaf

vascular bundles do not retain the procambium after

maturation, and all of the cells in the rice procambium

become specialized and differentiated. The metaxylem in

the large vascular bundle is a special structure, because its

differentiation is quite late, and occurs after the differ-

entiation of protoxylem. Therefore, OsWOX4 might serve

to maintain the undifferentiated state of metaxylem pre-

cursor cells to prevent their early maturation. This can

explain why OsWOX4 expression was not observed in

small and simple vascular bundles, because they lack

metaxylem.

Recent studies have shown that the expression pattern of

OsWOX5 is not fully equivalent to that of AtWOX5 in

Arabidopsis [48, 49]. OsWOX5 is expressed in root

metaxylem precursor cells as well as in the root tip stem

cell niche ([49] and this study). We did not observe

OsWOX5 expression in root protoxylem precursor cells.

The role of OsWOX5 in the root metaxylem precursor

might be similar to the proposed role of OsWOX4 in the

leaf metaxylem precursor, i.e., to prevent the early matu-

ration of the metaxylem before the differentiation of the

protoxylem. Further analysis of all the WOX functions in

stem cells of dicots and monocots will improve our

understanding of stem cell evolution in angiosperms.
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